A 1-Year Prospective Study on Co-Axis® Implants Immediately Loaded with a Full Ceramic Crown

Stefan Vandeweghe, DDS;* Jan Cosyn, DDS, MSc, PhD;† Eric Thevissen, DDS, MSc;‡ Linda Van den Berghe, DDS, MSc, PhD;§ Hugo De Bruyn, DDS, MSc, PhD¶

ABSTRACT

Introduction: The Co-Axis® implant (Southern Implants®, Irene, South Africa) has a 12-degree angle in the implant neck to overcome angulation problems.

Aim: To examine bone loss, peri-implant health, and aesthetical outcome after 1-year follow-up.

Materials and Methods: Fifteen single implants were placed in 14 patients in the premaxilla and immediately loaded with a screw-retained full ceramic crown. Periapical radiographs and standardized photographs were taken to determine bone loss and soft tissue changes. Plaque and bleeding levels were assessed. Patients’ satisfaction was measured using the Oral Health Impact Profile-14 questionnaire.

Results: After 1 year, all implants survived and mean bone loss was 1.20 mm, with no significant changes after 6 months. Plaque levels were low and no significant changes were observed. Bleeding levels decreased during the initial 3 months, but were constant thereafter. Before final torqueing was performed after 6 months, four cases of screw loosening occurred. Also, one crown had a piece of porcelain chipped off. Patients reported an overall increase in well-being. A mean midfacial recession of 0.37 mm was observed. The mesial papilla showed a slight increase of 0.14 mm, while the distal papilla decreased 0.35 mm.

Conclusion: With 100% survival and stable bone levels after 6 months, the Co-Axis implant showed a good clinical outcome when immediately loaded. The use of a full ceramic crown as a first and final restoration resulted in a good aesthetic outcome with few changes in papilla fill, although midfacial soft tissue was stable only after 1 year.

KEY WORDS: co-axis, dental implant, immediate loading, implant angulation, prosthetic complication, single implants, soft tissue changes, southern implant

INTRODUCTION

The most important reason for tooth extraction is an endodontic complication, followed by tooth fracture, trauma, periodontitis, and caries.¹⁻⁴ Single tooth replacement using implant therapy has proven to be predictable in short- and long-term studies with respect to implant survival.⁴⁻⁸ Nevertheless, it is a challenge because the restorations do not rely on the surrounding dentition for support. In this way, it differs from other implant restorations like cross-arches and fixed partial dentures (FPDs) and may hold an increased risk.⁹ Additionally, the outcome of single implant crowns depends on the aesthetic demand of the patient and prosthetic features, such as tooth shape, color, translucency, symmetry with the neighboring teeth, and the emergency profile. The latter is predominantly depending on proper implant location whereby the availability of bone and restoratively guided surgical placement are decisive factors. Especially in the aesthetic zone of the maxilla, a correct three-dimensional implant position is essential to enhance the emergency profile determining the natural appearance of the tooth. From a surgical point of view, this implies
sufficient circumferential bone volume to compensate for the peri-implant bone resorption after surgery and a prosthetically correct angulation.10–13 A perfect prosthetic direction is sometimes impossible because of the morphology of the alveolar crest or the available bone volume. In a recent systematic review, the reduction of the alveolar crest after tooth extraction was calculated as being nearly 4 mm14, while only 1.5-mm crestal height reduction occurred. Hence, implants are often palatally positioned, which hampers not only the emergency profile but also phonetics. A buccally oriented implant angulation may be corrected prosthetically by using an individual custom-made abutment.

However, an angulated abutment can sometimes lead to soft tissue recessions due to the large space needed, and frequently involves additional costs. Furthermore, it often limits the possibility to screw-retain the restoration and consequently means the crown has to be cemented. This increases the risk for cement residues and may affect the peri-implant bone loss and implant survival.

To handle the aforementioned angulation problems, a novel implant design has been introduced (Co-Axis®, Southern Implants, Irene, South Africa). This allows a prosthetic anchorage in a 12-degree deviation from the implant axis. The angulation is located within the implant neck and does not interfere with the design of the suprastructure. Hence, a normal screw-retained prosthetic reconstruction using normal cylinder components on fixture level is possible.

Today, the need to replace a missing maxillary tooth as quickly as possible with a fixed appliance has a high priority for most patients. On the other hand, immediate loading of a single implant in the maxilla may expose the implant to an additional risk because of the lower bone quality and the nonaxially loading directions of a nonconnected implant.15 Most studies, although predominantly with a rather short follow-up, report good results when loading single implants immediately after surgery.15–19 The temporary crown can either be screw-retained on the implant or cemented on the final abutment. The use of a final abutment from the day of surgery has advantages: soft tissue healing is uneventful, it causes less disturbance of the peri-implant mucosa, and it may by itself prevent additional bone loss.20 Immediate loading with a final crown not only offers the patient a shorter treatment time but also includes less treatment procedures and a lower treatment cost by excluding the temporary restoration.19,21,22

The goal of this prospective study is to describe the clinical survival, implant success, peri-implant health, prosthetic outcome, aesthetics, and patient opinion of Co-Axis implants installed in healed bone and immediately functionally loaded with a final screw-retained ceramic crown.

MATERIALS AND METHODS

Patient Selection

A total of 15 single implant cases were selected from the patients referred to the Department for Periodontology and Oral Implantology of the University Hospital in Ghent, Belgium. They had to be in good general health and treated for caries and periodontal disease, if present. Only implant sites with at least 2 months of healing were included. In addition, the single tooth gap was neighbored by two natural teeth in the premaxillary region (15–25). Bone dehiscences present after implant installation and requiring regenerative procedures, as well as insufficient primary implant stability (< 35 Ncm) requiring a two-stage approach, were excluded. All patients were selected by one examiner (SV), after a full mouth clinical and radiographical evaluation. The latter was based on standard periapical and/or panoramic radiographs. All subjects received detailed information on the study and signed a written consent according to the protocol approved by the Ethical Committee of the University Hospital (B67020072593).

Implant Surgery and Restorative Procedure

All implants used in this study were Co-Axis ø 4-mm or ø 5-mm implants with a 12-degree angle between the prosthetic screw and the implant axis; they are tapered and have a sandblasted and acid-etched titanium surface with a turned 0.8-mm titanium collar and a thread pitch of 0.6 mm. Details of the implant design are depicted in Figure 1.

All implant surgeries were performed by the same experienced periodontist (ET). Following local anesthesia (Scandonest 2% Special, Septodont, Niederkassel, Germany), patients rinsed with a 0.2% chlorhexidine solution for 1 minute (Corsodyl, GlaxoSmithKline, London, United Kingdom). Sulcular incisions were made around the neighboring teeth and connected by a crestal incision (Figure 2). A full thickness flap was elevated to expose the bone. The preparation of the
Implant bed was performed as described by the manufacturer. The drilling procedure consisted of consecutive drilling with a round bur to perforate the cortical bone, followed by a 2-mm parallel twist drill at full depth in the desired direction. A 12-degree direction indicator was used to control the implant direction with respect to the desired prosthetic position. For the 4-mm Co-Axis implant, a 4-mm tapered twist drill was used as final drill. For the 5-mm Co-Axis implant, an additional 5-mm tapered drill was used. All implants were installed at the level of the alveolar crest, and attention was paid to have the restorative screw angle correct. After implant positioning, the fixture mount was removed and replaced by an impression coping. A sterile rubber dam was placed around the impression coping to prevent leakage of impression material into the surgical site (Figure 3). An open tray impression was made using polyether impression material (Impregum, 3 M ESPE, St. Paul, MN, USA). Thereupon, a 4-mm healing abutment was placed and the flap was closed using resorbable sutures (Vicryl 4.0, Johnson & Johnson, New Brunswick, NJ, USA).

After surgery, the patient received analgesics (Ibuprofen 600 mg, three times a day) and instructions for oral hygiene and wound care. This included gentle brushing (TePe surgical, Malmö, Sweden) and chlorhexidine rinsing (Corsodyl 0.12%, GlaxoSmithKline) for 1 week.

Immediately after surgery, the impression was sent to the dental technician for fabrication of the crown. These were full ceramic crowns of porcelain fused to a prefabricated zirconium cylinder (CER-ZR45, Southern Implants®, Irene, South Africa). As it was a bone-level impression, the technician was instructed to position the contact points within 5 mm from the crest to allow a good papilla fill.13 To enhance a proper mucosal attachment, the cervical 2 mm of the zirconium cylinder was left uncovered with porcelain13,24 (Figure 3).

Within 24 hours after surgery, the patient returned for placement of the fixture level screw-retained crown. The crown was hand tightened onto the implant and adjusted for occlusion and articulation whenever required. The crowns were in full occlusion but care was taken to avoid contact during protrusion and excursion movements. After polishing, screw access holes were closed with a temporary filling material (Cavit, 3 M ESPE, St. Paul, MN, USA).

Examined Parameters

Peri-implant bone loss radiographs were made using an x-ray holder and with the x-ray beam perpendicular to the film. After digitalizing the x-rays, bone loss was measured using DBSWIN 4.0 software (Dürr, Bietigheim-Bissingen, Germany), with the implant thread as a reference for calibration. For each implant, the mean bone loss was calculated from the mesial and distal values. Bone loss was evaluated from baseline (1 day after surgery) to 1, 2, 4, 6 weeks and 3, 6, 12 months, and calibrated on the thread pitch.

Implant survival—an implant was a survival if it was still in situ and successfully clinically osseointegrated with no signs of mobility, pain, or purulence at 1-year follow-up.

Implant success—based on the criteria by Albrektsson and Isidor25 allowing 1.5-mm bone loss during the first year.

Plaque and bleeding—were assessed according to the modified plaque and bleeding index by Mombelli and colleagues26 by running a probe across the gingival margin.

Soft tissue changes—were measured on clinical photographs by means of a computer assisted morphometry program (Figure 4). The procedure was standardized in terms of patient and camera positioning. An individualized bite-fork (Futar D, Kettenbach/Artex) was used to...
position the patient in a reproducible manner in relation to the camera, which was in a fixed position. Morphometric analyses were done using Gingival Status 2009 v1.0.0.2 (Inspector BV, Baarn, The Netherlands). Pictures were calibrated, and three lines starting from a chosen reference point were used to measure the mesial and distal papilla and zenith. Changes over time were used for analyses.

Patient satisfaction – was measured using the Dutch version of the Oral Health Impact Profile (OHIP-14) questionnaire, a shortened version of the OHIP-49 questionnaire. This questionnaire captures seven conceptually formulated dimensions in 14 questions that are based on Locker’s theoretical model of oral health. Two questions per domain reflect on functional limitation, physical disability, physical pain, psychological
disability, psychological discomfort, social disability, and handicap. The questions are answered on a scale from 1 to 5. Five was defined as the maximal positive result indicative of total absence of problems; 1 corresponds to maximal negative answer or always a problem. Answers: 1 = “very often”; 2 = “fairly often”; 3 = “occasionally”; 4 = “hardly ever”; and 5 = “never”).

Aesthetic outcome – the aesthetic outcome was assessed using the pink esthetic score by Furhauser and colleagues and the white esthetic score by Belser and colleagues.

Complications were divided into biological complications (implant mobility, mucositis, fistula) or technical complications (porcelain chipping, screw loosening or fracture).

Follow-Up Intervals

All patients were invited for reassessment at 1, 2, 4, 6 weeks and 3, 6, 12 months after surgery. During these sessions, a periapical radiograph was taken to evaluate the interproximal bone level. Also, standardized clinical pictures were taken to evaluate soft tissue changes. Plaque and bleeding levels were scored after 1 week (= baseline), 3, 6, and 12 months. The implant and crown were checked for signs of biological and/or technical complications. During the 6-month recall session, the patients were given the option to replace or modify the crown when aesthetically necessary. If not, the crown was secured at 32 Ncm, and the screw access hole was filled with cotton and composite (Herculite®, Kerr, Bioggio, Switzerland). During all sessions, oral hygiene was reinforced whenever necessary. One week prior to and 6 months after surgery, patients were asked to fill in the OHIP-14 questionnaire to rate their satisfaction. Finally, at the 1-year reassessment, the aesthetic outcome was scored using the pink esthetic score and white esthetic score.
Statistical Analysis

The changes over time resulting in actual bone loss data from the time of implant placement were used for statistical analysis and examined by the Friedman test. If the Friedman test revealed an overall significant p value, time points were compared two–by–two using the Wilcoxon signed ranks test. The clinical data (plaque index, bleeding index, soft tissue changes) and OHIP-14 scores were examined likewise. The impact of the implant diameter and length on bone loss was evaluated using the Kruskal–Wallis test. If this test revealed an overall significant influence, pairwise Mann–Whitney tests were performed.

Intraexaminer repeatability and interexaminer reproducibility on study cast measurements and digital analyses were assessed using proportional agreement, Pearson correlation coefficients, and Wilcoxon signed ranks tests.

$p \leq .05$ was considered statistically significant.

RESULTS

Fifteen single implants were installed in 14 patients (six male, eight female) with a mean age of 55 years (SD: 13, range 31–80). The main reason for tooth loss was caries ($n = 6$), followed by fractures of the root or crown ($n = 3$), and periodontal disease ($n = 2$). In four cases, the tooth was already lost for many years for unknown reason. Four implants were in lateral incisor position, one in cuspid position, and ten in premolar position.

Implants were 4 or 5 mm in diameter and 10, 13, or 15 mm in length (Table 1). All 15 implants survived at the 1-year examination.

There was no patient dropout at any of the scheduled recalls, as each and every patient participated in all parts of the investigation.

| TABLE 1 Overview of Implants according to Their Length and Diameter |
|------------------|----------------|----------------|----------------|
| Implant Length | 10 mm | 13 mm | 15 mm | Total |
| 4 mm | 3 | 6 | 2 | 11 |
| 5 mm | 1 | 2 | 1 | 4 |
| Total | 4 | 8 | 3 | 15 |
Bone Loss and Success

The mean peri-implant bone loss calculated from the day of surgery to 1 year was 1.20 mm (SD: 0.22, range 1.00–1.80). The intraexaminer repeatability on bone levels was high (95% agreement within 0.2 mm deviation; Pearson correlation coefficient: 0.923 – $p < .001$; Wilcoxon signed ranks test: $p = .114$), as was the interexaminer reproducibility (95% agreement within 0.2 mm deviation; Pearson correlation coefficient: 0.930 – $p < .001$; Wilcoxon signed ranks test: $p = .404$). No statistically significant changes in bone loss were observed after the first 6 months ($p = .052$) (Table 2). Bone level changes at all intervals of all 15 implants are shown in Figure 5. According to the success criteria of Albrektsson and Isidor, 14/15 implants were successful and demonstrated less than 1.5-mm bone loss after 1 year. Bone loss was independent of implant diameter ($p = .112$) or length ($p = .540$).

<table>
<thead>
<tr>
<th>Time after Surgery</th>
<th>Mean</th>
<th>Median</th>
<th>SD</th>
<th>Range</th>
<th>p Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 week</td>
<td>0.19 mm</td>
<td>0.20</td>
<td>0.129</td>
<td>0.00–0.55</td>
<td>0.001*</td>
</tr>
<tr>
<td>2 weeks</td>
<td>0.47 mm</td>
<td>0.50</td>
<td>0.194</td>
<td>0.10–0.95</td>
<td>0.001*</td>
</tr>
<tr>
<td>4 weeks</td>
<td>0.70 mm</td>
<td>0.50</td>
<td>0.239</td>
<td>0.30–1.30</td>
<td>0.001*</td>
</tr>
<tr>
<td>6 weeks</td>
<td>0.95 mm</td>
<td>0.90</td>
<td>0.239</td>
<td>0.60–1.50</td>
<td>0.001*</td>
</tr>
<tr>
<td>3 months</td>
<td>1.12 mm</td>
<td>1.05</td>
<td>0.205</td>
<td>0.90–1.70</td>
<td>0.001*</td>
</tr>
<tr>
<td>6 months</td>
<td>1.19 mm</td>
<td>1.10</td>
<td>0.224</td>
<td>1.00–1.80</td>
<td>0.008*</td>
</tr>
<tr>
<td>12 months</td>
<td>1.20 mm</td>
<td>1.10</td>
<td>0.215</td>
<td>1.00–1.80</td>
<td>0.052</td>
</tr>
</tbody>
</table>

*Statistically significant difference at 0.05 level.

Plaque and Bleeding

Plaque and bleeding are summarized in Table 3. No significant differences in the distribution of plaque levels were seen between the different time intervals ($p = .757$). Significant differences in bleeding levels were observed ($p < .001$), with a significant decrease in bleeding between 1 week and 3 months ($p = .001$). After 3 months up to 1 year, no additional changes were observed ($p = 1.000$).

Complications

All complications were of technical nature, the most frequent being screw loosening. This occurred in four cases, all during the initial 6 months before the prosthetic screws were torqued at 32 Ncm.

One premolar crown had a piece of porcelain chipped off shortly before the 1-year control but was still in full occlusal load. A new crown was made for aesthetic reasons.

Soft Tissue

A mean midfacial recession of 0.37 mm (SD: 0.93, range –0.60–1.00) was observed from the time of crown placement until 1 year post-op (Table 4). The intraexaminer repeatability on was high (93.3% agreement within 0.2 mm deviation; Pearson correlation coefficient: 0.985 – $p < .001$; Wilcoxon signed ranks test: $p = .720$), as was the interexaminer reproducibility (86.6% agreement within 0.2 mm deviation; Pearson correlation coefficient: 0.998 – $p < .001$; Wilcoxon signed ranks test: $p = .457$). Significant changes occurred between all intervals ($p = .002$). The mesial papilla showed no
significant differences in height ($p = .467$), but the distal papilla showed some decrease in height over time ($p = .023$).

OHIP-14 Patient Satisfaction

Based on the OHIP-14 questionnaire, there was a statistically significant overall improvement in satisfaction and well-being between the presurgical and 6 months postoperative condition ($p = .002$) (Figure 6). More precisely, there was a significant improvement in speaking (Question 1: $p = .020$), a reduction in pain (Question 3: $p = .011$), eating comfort improved (Question 4: $p = .016$), patients felt less tensed (Question 5: $p = .016$), could relax easier (Question 9: $p = .026$), and were less embarrassed (Question 10: $p = .026$).

Aesthetic Outcome

An overview of pink and white esthetic score can be seen in Table 5. After 1 year, the mean pink esthetic score was 8.53 (SD: 1.25, range 6–10), with 12/15 implants having at least the minimum clinical acceptable score of 8/14. The mean white esthetic score was 6.53 (SD: 1.46, range 4–9), with 10/15 having at least 6/10.

TABLE 3 Frequency Distribution of Plaque and Bleeding Levels

<table>
<thead>
<tr>
<th>Plaque levels</th>
<th>Time</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 week</td>
<td>12</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>3 months</td>
<td>12</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>6 months</td>
<td>14</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>1 year</td>
<td>13</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

TABLE 4 Soft Tissue Changes

<table>
<thead>
<tr>
<th>Soft Tissue Recession from Baseline</th>
<th>Standard Deviation, Range</th>
<th>p Value from Baseline</th>
<th>p Value within Time Intervals</th>
</tr>
</thead>
<tbody>
<tr>
<td>Midfacial</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3 months</td>
<td>0.30</td>
<td>SD 0.37, Range −0.50–0.80</td>
<td>0.012*</td>
</tr>
<tr>
<td>6 months</td>
<td>0.31</td>
<td>SD 0.42, Range −0.70–0.90</td>
<td>0.020*</td>
</tr>
<tr>
<td>1 year</td>
<td>0.37</td>
<td>SD 0.39, Range −0.60–1.00</td>
<td>0.007*</td>
</tr>
<tr>
<td>Mesial Papilla</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3 months</td>
<td>0.07</td>
<td>SD 0.72, Range −1.30–1.20</td>
<td>0.826</td>
</tr>
<tr>
<td>6 months</td>
<td>−0.19</td>
<td>SD 0.98, Range −2.20–1.30</td>
<td>0.495</td>
</tr>
<tr>
<td>1 year</td>
<td>−0.14</td>
<td>SD 0.96, Range −2.10–1.30</td>
<td>0.670</td>
</tr>
<tr>
<td>Distal Papilla</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3 months</td>
<td>0.54</td>
<td>SD 1.09, Range −1.10–3.90</td>
<td>0.044*</td>
</tr>
<tr>
<td>6 months</td>
<td>0.44</td>
<td>SD 1.20, Range −1.00–4.10</td>
<td>0.146</td>
</tr>
<tr>
<td>1 year</td>
<td>0.35</td>
<td>SD 0.93, Range −1.00–2.90</td>
<td>0.111</td>
</tr>
</tbody>
</table>

*Significant at 0.05 level, Wilcoxon Test.
DISCUSSION
The original two-stage healing protocol was intended to avoid micromovements, hereby essentially avoiding fibrous tissue encapsulation and failure.31 Today, studies have proven that micromotions of 50 to 150 μ do not negatively influence the osseointegration process and even may stimulate the healing process, resulting in a larger bone-to-implant contact.32,33 Therefore, osseointegration can even occur when implants are loaded immediately.34–36

In the present study, all implants survived. Although the number of implants was limited, this fall within the range of 79–100% obtained by immediate functional loading of single implants.37–42

Most studies comparing immediate and delayed loading showed no significant differences in survival rate,43–45 provided that primary stability was achieved.46,47 Ottoni and colleagues48 found that implant survival depends on insertion torque and recommended torque values of 32 Ncm.

The fact that the crowns were put into full occlusal contact did not negatively affect implant survival. This is in agreement with Lindeboom and colleagues18 who compared the outcome of immediate functional and nonfunctional loading and found no significant differences. They suggested that the influence of tongue pressure, perioral musculature, and patient habits cannot be controlled for and may expose the implant to additional stress irrespective of direct contact or functional loading.
A recent meta-analysis shows an increased risk for implant failure when single implants are loaded immediately. This was not found in our study, although number of implants was very limited.

Good clinical outcomes with tilted implants were already reported by Malo and colleagues using the all-on-four concept. The bone loss pattern in the latter did not differ significantly from axially loaded implants. This was also confirmed by Koutouzis and colleagues in a 5-year follow-up study comparing tilted and straight implants. In the present study, the angulated position from the implant did not seem to have an adverse effect on the implant survival and success. As the angulation is subcrestally at the level of the implant neck, this correction does not interfere with the soft tissue contouring nor hampers the prosthetic design. As zirconia abutments are more prone to fracture, the implant allows the use of a straight zirconia abutment and therefore improves the strength of the crown.

The amount of peri-implant bone loss after 1 year was 1.20 mm and is comparable with similar studies on immediate loading of single implants. Hall and colleagues reported 0.63-mm bone loss for the first year, while Ottoni and colleagues reported 1.36 mesially and 2.44 distally after the first year. Both studies also compared with a control group of delayed loaded implants and found no significant differences. In the present study, significant bone loss was observed up to 6 months after surgery, where after, the bone level stabilized. This was confirmed by earlier studies reporting a steady state after 6 months.

Based on the success criteria by Albrektsson and Isidor, 14/15 implants could be considered successful in this study. Although the number of cases was limited, this demonstrates the good success rate that can be obtained by immediate loading with single implants. Hall and colleagues reported a survival rate of 92.3%, with one implant losing more bone than acceptable. Degidi and colleagues reported an implant success of 97.2% after 5 years. Obviously, these data may differ depending on the definition of implant success.

The microbial film, correlated with the presence of plaque, is an etiologic factor for implant diseases and may induce bone loss. Therefore, the presence of plaque can be a predictor for disease and for planning intervention. All patients in the current study showed very low plaque levels during the period of the study. However, one should keep in mind that a Hawthorne effect could have been present, possibly influencing oral hygiene habits. Bleeding levels were also very low, though the importance of this variable is questionable. A longitudinal study showed weak correlation between gingival bleeding index and peri-implant bone loss. Also, Lekholm and colleagues found no correlation between bleeding-on-probing and histology, microbiology and radiographic changes, while others claim bleeding as an important indicator for disease.

Technical complications occurred, most of them related to the loosening of the prosthetic gold screw, which was also reported by Lindeboom and colleagues. This was due to the fact that the crowns were initially tightened manually in order to remove the crown if necessary (e.g., if recession occurred and the patient requested a new crown). Out of the 14 patients, 13 were satisfied with the overall result and only one patient requested crown replacement after porcelain chipping occurred. Nevertheless, the use of a torque driver to tighten the prosthetic screws at crown placement is mandatory to prevent screw loosening. In addition, one should keep in mind that 1-year follow-up is rather short, and longer follow-up is needed to make a proper conclusion regarding the occurrence and nature of complications.

Although a massive amount of research on implant dentistry is available, only an estimated 2% reports patient’s centered outcome. The majority involves fully edentulous patients, who are known to profit significantly from dental implants. Only very few single implant studies also have evaluated patient satisfaction. With a significant overall improvement and an increase in satisfaction for six questions, this study demonstrates clearly that even the rehabilitation of a single tooth can significantly improve patient’s quality of life. Patients did not feel the loss of a tooth as a handicap or a social or physical disability. The present study indicates that placement of an implant-supported single crown improves the oral health-related quality of life, which is in agreement with Berretin-Felix and colleagues and Jokstad.

Most clinical studies focus on implant survival and success. The patient, however, is more concerned about the aesthetic result. Therefore, the use of a standardized index to score the appearance of the implant-supported tooth may be important to validate or reject certain treatment protocols. Fürhauser and colleagues created an index to validate soft tissue aesthetics around single
implants. This protocol was later modified by Belser and colleagues who added a comparable crown index. Their clinical study on early placed implants resulted in an overall score of 14.7/20, a pink esthetic score of 7.8/10, and a white esthetic score of 6.9/10. Although these results seem better than those from the current study, one should keep in mind that most of our patients had a history of periodontitis, resulting in decreased bone volume, recession, and reduced or absent papilla at the start of the study. When soft tissue changes were measured, only small changes were observed. The mesial papilla showed a slight increase of 0.14 mm in height after 1 year, while the distal papilla showed a small recession of 0.35 mm. Kan and colleagues reported recessions of the mesial and distal papillae of respectively 0.53 mm and 0.39 mm after 1 year when implants were immediately placed and loaded. De Rouck and colleagues measured, only small changes were observed. The mesial papilla showed a slight increase of 0.14 mm in height after 1 year, while the distal papilla showed a small recession of 0.35 mm. Kan and colleagues reported recessions of the mesial and distal papillae of respectively 0.53 mm and 0.39 mm after 1 year when implants were immediately placed and loaded. De Rouck and colleagues reported midfacial soft tissue recession and mesial/distal papilla shrinkage of 0.53, 0.41, and 0.31 mm, respectively. Donati and colleagues found recessions of 0.43 mm for the mesial and 0.21 mm for the distal papilla. The mean midfacial recession of 0.37 mm was less than the 0.55 mm reported by Kan and colleagues. When soft tissue changes were measured, only small changes were observed. The mesial papilla showed a slight increase of 0.14 mm in height after 1 year, while the distal papilla showed a small recession of 0.35 mm. Kan and colleagues reported recessions of the mesial and distal papillae of respectively 0.53 mm and 0.39 mm after 1 year when implants were immediately placed and loaded. De Rouck and colleagues reported midfacial soft tissue recession and mesial/distal papilla shrinkage of 0.53, 0.41, and 0.31 mm, respectively. Donati and colleagues found recessions of 0.43 mm for the mesial and 0.21 mm for the distal papilla. The mean midfacial recession of 0.37 mm was less than the 0.55 mm reported by Kan and colleagues, but, although very small changes occurred after the initial 3 months, these were still statistically significant. Therefore, clinicians should be careful regarding the timing of abutment placement and the abutment design. The position of abutment margin should be positioned enough subgingivally, and pressure should be avoided once the soft tissues have stabilized.

CONCLUSION
In the current study, the Co-Axis implant performed very well under immediate functional loading in the premaxilla, with no failures and stable bone remodeling after 1 year. The angulated implant neck eliminates most of the angulation problems, allowing the practitioner the maximal choice in implant prosthetics. The use of a full ceramic crown as the first and only restoration reduced the number of treatments, gave the patients an immediate result, and reduced the total costs. Patients did not require replacement of the “provisionals” for aesthetical purposes.

ACKNOWLEDGMENT
Stefan Vandeweghe received a grant from Southern Implants® to conduct this study. The company provided all materials for the study.

REFERENCES

